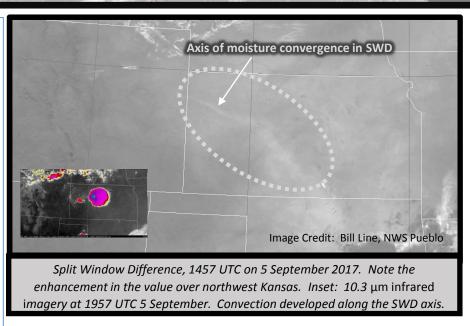


Split Window Difference (10.3 µm - 12.3 µm)


Quick Guide

Why is the Split Window Difference Important?

The Split Window Difference (SWD) is a Brightness Temperature Difference (BTD) field that highlights low-level moisture and dust. Moisture can be detected because there is more absorption by water vapor of energy at wavelengths in the 'Dirty Window' Channel (12.3 μ m) than in the 'Clean Window' (10.3 μ m). Dust can be detected because airborne silicates absorb more 10.3 μ m energy than 12.3 μ m energy. More absorption of energy leads to colder brightness temperatures. In the image at right, lighter grays highlight a greater SWD, *i.e.*, more moisture in the atmosphere. Convection later forms on the moist axis

What can the Split Window Difference tell you?

Sign	Physically Relates to	Wavelength of energy being absorbed	What is absorbing the energy?
Positive	Moisture in the Atmosphere	12.3 μm	Water Vapor
Negative	Dust in the Atmosphere	10.3 μm	Silicate Dust Particles

Impact on Operations

<u>Primary Application</u>: Identify gradients in moisture, or detect moistening in the atmosphere.

Application: Identify regions of low-level dust.

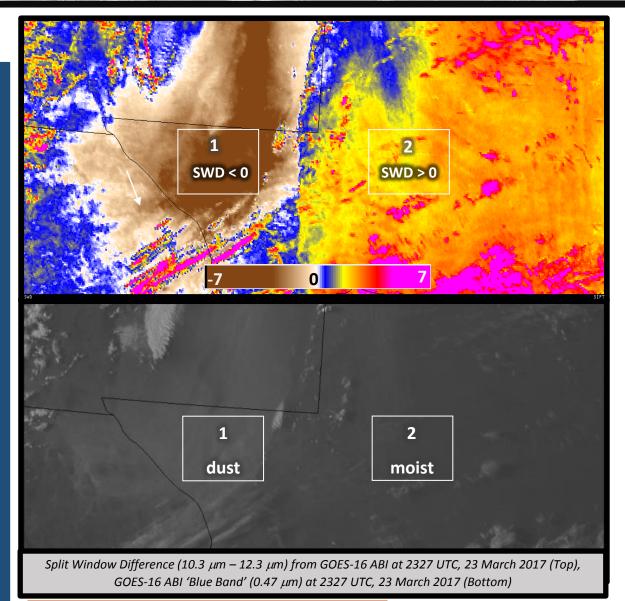
Limitations

Limitation: If dust is occurring in a moist environment, the cooling effects of water vapor and silicates can balance each other.

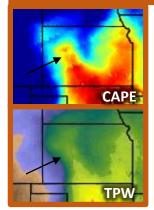
Limitation: Changes in the difference field can be affected by changes in moisture or changes in temperature – or both. This is especially true as heating erodes inversions after sunrise.

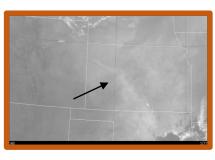
Split Window Difference (10.3 µm - 12.3 µm)

Quick Guide


Image Interpretation

negative values where dust exists, because the 10.3 µm Brightness Temperature (BT) is colder than the 12.3 µm BT: Silicates in dust absorb 10.3 µm radiation.


The SWD shows


The SWD shows

positive values where a moist airmass exists, because the 10.3 μm Brightness Temperature (BT) is warmer than the 12.3 μm: water vapor absorbs energy at 12.3 μm. Gradients in the SWD can highlight moisture gradients.

The SWD (below right, from page 1) can describe low-level moisture; features in it will appear in other measures of moisture (Total Precipitable Water (TPW), for example, or Convective Available Potential Energy (CAPE)), as shown below.

Resources

Journal Article on SWD

Use of the GOES-R Split-Window Difference to Diagnose Deepening Low-Level Water Vapor

Training Recording

FDTD GOES-16 Webinar on SWD

Hyperlinks do not work in AWIPS but they do in VLab